FADD is required for multiple signaling events downstream of the receptor Fas.

نویسندگان

  • P Juo
  • M S Woo
  • C J Kuo
  • P Signorelli
  • H P Biemann
  • Y A Hannun
  • J Blenis
چکیده

To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T cell-specific FADD-deficient mice: FADD is required for early T cell development.

FADD/Mort1, initially identified as a Fas-associated death-domain containing protein, functions as an adapter molecule in apoptosis initiated by Fas, tumor necrosis factor receptor-I, DR3, and TRAIL-receptors. However, FADD likely participates in additional signaling cascades. FADD-null mutations in mice are embryonic-lethal, and analysis of FADD(-)/- T cells from RAG-1(-)/- reconstituted chime...

متن کامل

Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis.

Fas-associated death domain protein (FADD) is an adaptor protein bridging death receptors with initiator caspases. Thus, its function and localization are assumed to be cytoplasmic, although the localization of endogenous FADD has not been reported. Surprisingly, the data presented here demonstrate that FADD is mainly nuclear in several adherent cell lines. Its accumulation in the nucleus and e...

متن کامل

Effects of a dominant interfering mutant of FADD on signal transduction in activated T cells

The cytoplasmic adaptor protein FADD is an essential component of the death-inducing signaling complexes (DISCs) that assemble when TNF receptor family members, such as Fas, are ligated. FADD inititates the proteolytic cascade that leads to apoptosis by binding to and promoting the autocatalytic activation of caspase-8 [1-4]. Surprisingly, FADD (but not caspase-8) is also required for T cells t...

متن کامل

Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis

The Fas cell surface receptor induces apoptosis upon receptor oligomerization. We have identified a novel signaling protein, termed Daxx, that binds specifically to the Fas death domain. Overexpression of Daxx enhances Fas-mediated apoptosis and activates the Jun N-terminal kinase (JNK) pathway. A C-terminal portion of Daxx interacts with the Fas death domain, while a different region activates...

متن کامل

Spots

Fas (CD95, APO-1, TNFRSF6) is a TNF receptor superfamily member that directly triggers apoptosis and contributes to the maintenance of lymphocyte homeostasis and prevention of autoimmunity. Although FADD and caspase-8 have been identified as key intracellular mediators of Fas signaling, it is not clear how recruitment of these proteins to the Fas death domain leads to activation of caspase-8 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 1999